hts.data_tasks package¶
Submodules¶
hts.data_tasks.analysis module¶
hts.data_tasks.data_normalization module¶
- synopsis
data_normalization
implements methods connected to the
readout normalization of a high throughput screening experiment
hts.data_tasks.data_tasks module¶
hts.data_tasks.qc_detect_data_issues module¶
- synopsis
qc_detect_data_issues
implements methods to apply specified thresholds, and declare data that does not
comply with this cut-offs, either in terms of a Run instance with truncated data, or a Data issue file.
-
hts.data_tasks.qc_detect_data_issues.
detect_low_cell_viability
(run, control_readout_tag, control_sample_type, controlled_sample_types, data_issue_tag, path, alpha=0.05, *args, **kwargs)[source]¶ Detect which wells suffer from low cell viability by too strong divergence of a base value. As a practical example, RealTime-Glo measurements are performed for all wells. Sample wells that deviate > x from nominal control wells are considered to have “issues”.
- Parameters
run (run.Run) – A Run instance.
control_readout_tag (str) – Tag of the control experiment readout (e.g. RealTime-Glo)
control_sample_type (str) – sample_type used as control.
controlled_sample_types (list of str) – sample_types that will be evaluated in reference to control_sample_type
data_issue_tag (str) – Tag of the data issue data that is created.
path (str) – Path to data issue result file.
alpha (float) – Significance level for Real-TimeGlo cut-off.
hts.data_tasks.qc_knitr module¶
- synopsis
quality_control
implements all methods connected to the
quality control of a high throughput screening experiment. qc_knitr implements knitr specific methods.
-
hts.data_tasks.qc_knitr.
create_report
(run, path, methods, force, config_data=None, knit_html=True, resultfile_tag='qc_report', **kwargs)[source]¶ Run QC & data visualization tasks, and combine the result to a report.
- Parameters
run (run.Run) – Run instance
path (str) – Path to the resulting qc report file.
(dict of str (methods) – (dict of str: stuff)): A dictionary connecting an abitrary name of each qc method to a dictionary containing the description (function name, filters, … for the qc method.)
force (Boolean) – If False, only perform the QC if the result file does not yet exist.
config_data (list of tuples) – List of tuples used as content for a table in the qc report.
knit_html (Boolean) –
-
hts.data_tasks.qc_knitr.
heat_map_log10_mark_conditionally
(condition='y<=-10', color='white')[source]¶
-
hts.data_tasks.qc_knitr.
knitr_header_setup
(path_knitr_data, plate_names, meta_data=None, original_data_frame='d_all', output='html_document', title='QC Report')[source]¶ Create knitr markdown file header and setup.
Create knitr markdown file header and setup.
- Args:
path_data (str): Path to data file
- Returns:
header (str): knitr markdown file header environment (str): knitr markdown environment setter data_loader (str): knitr markdown data loader
-
hts.data_tasks.qc_knitr.
knitr_subset
(subset_requirements, original_data_frame='d_all', new_data_frame='d')[source]¶ Create knitr code to subset the data.
Create knitr code to subset the data.
- Args:
subset_requirements (dict): For each requirement, key, values and negated need to be supplied. original_data_frame (str): Name of the original data frame. new_data_frame (str): Name of the new data frame.
- Returns:
subset (str): Knittr code subsetting
-
hts.data_tasks.qc_knitr.
perform_qc
(method_name, *args, **kwargs)[source]¶ Perform QC method_name with parameter *args and **kwargs, and return result.
-
hts.data_tasks.qc_knitr.
wrap_knitr_chunk
(chunk, chunk_name, echo=False, evaluate=True, message=False, warning=False, options='')[source]¶ - Instead of explicitly defining echo, evaluate and so on, it may be advised to implicitly provide all Knitr chunk
options as a string in “options” In the same regard, one could rename “verbosity” to “options”/”knitr_chunk_options”
hts.data_tasks.qc_matplotlib module¶
- synopsis
qc_matplotlib
implements common plots to visualise HTS data available on the fly.
-
hts.data_tasks.qc_matplotlib.
create_report
(*args, **kwargs)[source]¶ This methods is expected by run.Run . Todo: Needs implementation if Matplotlib reports are required.
-
hts.data_tasks.qc_matplotlib.
heat_map_multiple
(run, data_tag, result_file=None, n_plates_max=10, *args, **kwargs)[source]¶ Create a heat_map for multiple readouts
Create a heat_map for multiple readouts
-
hts.data_tasks.qc_matplotlib.
heat_map_multiple_gaussian_process_model
(run, kernel_tag, result_file=None, magnification=5, n_plates_max=10, *args, **kwargs)[source]¶ Create a heat_map for multiple readouts
Create a heat_map for multiple readouts
-
hts.data_tasks.qc_matplotlib.
heat_map_single
(run, data_tag, plate_tag, **kwargs)[source]¶ Create a heat_map for a single plate
Create a heat_map for a single plate
-
hts.data_tasks.qc_matplotlib.
heat_map_single_gaussian_process_model
(run, data_tag_readout, sample_tag, plate_tag, magnification=5, *args, **kwargs)[source]¶ Create a heat_map for multiple readouts
Create a heat_map for multiple readouts
- model_as_gaussian_process(self, data_tag_readout, sample_key,
kernel_type=’m32’, n_max_iterations=1000, plot_kwargs=False,
-
hts.data_tasks.qc_matplotlib.
slice_multiple_gaussian_process_model
(run, data_tag_readout, sample_tag, result_file=None, slice=5, n_plates_max=10, *args, **kwargs)[source]¶ Create a heat_map for multiple readouts
Create a heat_map for multiple readouts
# Currently: using Plotly. # Perhaps, matplotlib.axes._subplots.AxesSubplot can be integrated with Matplotlib’s AxesGrid as above.
-
hts.data_tasks.qc_matplotlib.
slice_single_gaussian_process_model
(run, data_tag_readout, sample_tag, plate_tag, slice=5, **kwargs)[source]¶ Create a heat_map for multiple readouts
Create a heat_map for multiple readouts
# Currently: using Plotly. # Perhaps, matplotlib.axes._subplots.AxesSubplot can be integrated with Matplotlib’s AxesGrid as above.