hts.run package¶
Submodules¶
hts.run.constants module¶
hts.run.run module¶
- synopsis
The Run Class.
-
class
hts.run.run.
Run
(plates, path=None, **kwargs)[source]¶ Bases:
object
Run
describes all information connected to one run of a highthroughput screening experiment
-
name
¶ Name of the run
- Type
str
-
plates
¶ collections.OrderedDict of
Plate
instances- Type
collections.OrderedDict of
Plate
-
width
¶ Width of the plates
- Type
int
-
height
¶ Height of the plates
- Type
int
-
_protocol
¶ Protocol
instance- Type
Protocol
-
_platelayout
¶ PlateLayout
instance- Type
PlateLayout
-
_qc
¶ A collection of
QualityControl
instance- Type
dict of dict of
QualityControl
instance
-
raw_qc
¶ QualityControl
instance - NEEDED?- Type
QualityControl
-
net_qc
¶ QualityControl
instance - NEEDED?- Type
QualityControl
-
experimenter
¶ Name of the experimenter
- Type
str
-
experimenter
Mail address of the experimenter
- Type
str
..todo:: Implement me :)
-
add_data_from_data_frame
(tags, plate_data_type='meta_data')[source]¶ - Parameters
tags (list of str) – HTS data and meta data is joined on the columns defined by tags.
-
add_meta_data
(tag=None, **kwargs)[source]¶ Set self.data_frame to merged internal and meta_data.
- Parameters
tag – The meta data tag defining which meta data to use. If tag is not set and there is only one set of meta data it will be used.
**kwargs – kwargs passed on to run_io.add_meta_data
-
analysis
(**kwargs)[source]¶ Perform analysis and save the results.
Perform analysis and save the results. Parameters are taken from the protocol and the run config. Each ProtocolTask tagged with “analysis” is run. Each ProtocolTask may be run multiple times, if several dicts are defined for it (this could be either in protocol, or in the run config.)
-
classmethod
create
(origin, path, format=None, dir=False, **kwargs)[source]¶ Create
Run
instance.Create
Run
instance.- Parameters
origin (str) – At current only “config” or “plates”
format (str) – Format of the origin, at current not specified
path (str) – Path to input file or directory
dir (Bool) – True if all files in directory shall be read, else false.
Todo
Write checks for
format
andpath
.
-
classmethod
create_from_config
(path, file, reload=True)[source]¶ Read config and use data to create Run instance.
Read config and use data to create Run instance.
- Parameters
path (str) – Path to input configobj file
file (str) – Filename of configobj file
force (boolean) – If not force and the run instance exists as a pickle, reload the pickle instead of reloading the data.
-
classmethod
create_from_csv_file
(path, file, **kwargs)[source]¶ Read csv data and create Run instance.
Read csv data and create Run instance.
- Parameters
path (str) – Path to input csv file
file (str) – Filename of csv file
-
classmethod
create_from_envision
(path, file)[source]¶ Read envision data and create Run instance.
Read envision data and create Run instance.
- Parameters
path (str) – Path to input configobj file
file (str) – Filename of configobj file
Todo
Write checks if path and file exists when necessary.
-
property
data_frame
¶
-
property
data_frame_samples
¶
-
do_task
(type, type_attribute='_{}', force=True)[source]¶ Perform task. A task could be e.g. qc or analysis.
-
filter
(**kwargs)[source]¶ Filter run data according to filter keyword arguments.
Filter run data according to filter arguments. The values for each plates are concatenated.
- Parameters
kwargs – Keyword arguments for filtering.
- Returns
list of floats
-
get_run_config_data
()[source]¶ Extract relevant meta data for qc and analysis reports. Returns list of tuples: [(key_str, value_str)]
-
property
gp_models
¶
-
classmethod
map_config_file_definition
(config, n_plate)[source]¶ Extract the files from the config file.
hts.run.run_io module¶
- synopsis
Input/output for runs.
-
hts.run.run_io.
add_meta_data
(run_data, meta_data_kwargs, meta_data_well_name_pattern=None, filter_condition=None, meta_data_rename=None, meta_data_exclude_columns=None, readouts=None)[source]¶
-
hts.run.run_io.
read_csv
(file, column_plate_name, column_well, columns_readout, columns_meta, width, height, delimiter=', ', remove_empty_row=True)[source]¶ Read run data file in csv format, with one row for each well.
E.g.: Plate ID,Well ID,Compound,,Data_0,Data_1,signal XYZ005,A001,Glucose,,4444,5555,0.3
-
hts.run.run_io.
file
¶ The path to the file.
- Type
str
-
hts.run.run_io.
column_plate_name
¶ The column with plate name information.
- Type
str
-
hts.run.run_io.
column_well
¶ The column with well coordinate information.
- Type
str
-
hts.run.run_io.
columns_readouts
¶ Columns with readout data.
- Type
list of str
-
hts.run.run_io.
columns_metas
¶ Columns with meta data.
- Type
list of str
-
-
hts.run.run_io.
serialize_as_csv_one_row_per_well
(run_data, readouts=None, rename_columns_dict=None, **kwargs)[source]¶ Write run data file in csv format, with one row for each well.
E.g.: Plate ID,Well ID,Compound,,Data_0,Data_1,signal XYZ005,A001,Glucose,,4444,5555,0.3
-
hts.run.run_io.
readouts
¶ Which readouts will be printed. If not indicated, all readouts are printed.
- Type
list of str
-
hts.run.run_io.
plate_name
¶ The name of the plate name column
- Type
str
-
hts.run.run_io.
well_name
¶ The name of the well name column
- Type
str
-
hts.run.run_io.
plate_layout_name
¶ The name of the plate layout column
- Type
str
-
-
hts.run.run_io.
serialize_as_pandas
(run_data, readouts=None, meta_data=None, well_name_pattern='{}{}', filter_condition=None)[source]¶ Serialize data as pandas with one row == one well.
E.g.: Plate ID,Well ID,Compound,,Data_0,Data_1,signal XYZ005,A001,Glucose,,4444,5555,0.3
-
hts.run.run_io.
readouts
Which readouts will be printed. If not indicated, all readouts are printed.
- Type
list of str
-
hts.run.run_io.
plate_name
The name of the plate name column
- Type
str
-
hts.run.run_io.
well_name
The name of the well name column
- Type
str
-
hts.run.run_io.
plate_layout_name
The name of the plate layout column
- Type
str
-
-
hts.run.run_io.
serialize_run_for_r
(run_data, delimiter=', ', column_name=None)[source]¶ Serialize run data for easy read-in as a data.frame in R.
Serialize run data for easy read-in as a data.frame in R, in e.g. csv or tsv format.
-
hts.run.run_io.
delimiter
¶ A String instance. Defines the delimiter in the output file (e.g. “,” for csv or ” ” for tsv)
- Type
str
- Returns
The serialized run_data as a string.
- Return type
str
..ToDo: Update to fit current Run class.
-