hts.plate_data package

Submodules

hts.plate_data.data_issue module

synopsis

The DataIssue Class.

class hts.plate_data.data_issue.DataIssue(data, **kwargs)[source]

Bases: hts.plate_data.plate_data.PlateData

DataIssue describes all information connected to the plate_data of a high throughput screen.

sample_replicate_count

(Explain!)

Type

str

layout_general_type

The plate layout (explain!)

Type

list of lists

classmethod create_well_list(well_list, width, height, data_tag, **kwargs)[source]
Parameters
  • well_list (list of tuple) – List of wells with data issues, given as coordinate tuples (rowi, columni)

  • width (int) – Width of the well plate

  • height (int) – Height of the well plate

  • data_tag (str) – Tag of the created data

hts.plate_data.meta_data module

class hts.plate_data.meta_data.MetaData(**kwargs)[source]

Bases: hts.plate_data.plate_data.PlateData

hts.plate_data.plate_data module

synopsis

The PlateData Class.

class hts.plate_data.plate_data.PlateData(data, type=None, **kwargs)[source]

Bases: object

PlateData describes arbitrary data for all wells in a plate.

The keys of the the data dicts are referred to as “data_tag”.

width

Width of the plate

Type

int

height

Height of the plate

Type

int

data

A dict of same-sized matrices with arbitrary data

Type

dict of lists of lists

tags

List of tags for each PlateData instance.

Type

list of str

__iter__()[source]

Iterates over data matrices.

__str__()[source]

Create string for Readout instance.

add_data(data, tag=None)[source]
classmethod create(formats, paths, configs=None, names=None, tags=None, types=None, **kwargs)[source]

Create PlateData instance.

Create PlateData instance.

Parameters
  • path (str) – Path to input file or directory

  • format (str) – Format of the input; translates to a method.

classmethod create_csv(path, name, tag=None, type=None, **kwargs)[source]
classmethod create_excel(path, name, tag=None, type=None, **kwargs)[source]

In one excel file, the data for one plate is covered. Currently, all sheets in the excel file are used.

Parameters
  • path (str) – The path to the excel sheet.

  • name

  • tag

  • type

  • **kwargs

Returns

PlateData instance

classmethod create_excel_multiple_plates_per_file(path, name, tag=None, type=None, **kwargs)[source]

This is a hack, such that information for multiple plates can be retrieved from a single plate (see run.py)

Parameters
  • path (str) – path is the name of the particular excel sheet retrieved for the current plate.

  • name

  • tag

  • type

  • **kwargs – Kwargs contains “file”, which is the path to the the excel file.

Returns

PlateData instance

classmethod create_from_coordinate_tuple_dict(data, width, height, **kwargs)[source]

Create a Plate data instance from information in a dict.

Parameters
  • data (dict) – {tag: {(i_row, i_col): datum}}.

  • width – The width of the plate

  • height – The height of the plate

  • **kwargs

Returns

PlateData instance

classmethod create_pickle(path, **kwargs)[source]
get_data(data_tag)[source]
Parameters

data_tag (str) – The data_tag for which to retrieve a the data.

Returns: A matrix or lists of list (width x height) of data.

get_values(wells, data_tag, value_type=None)[source]

Get list of values for defined wells of the data tagged with data_tag.

Get list of values for defined wells of the data tagged with data_tag. If value_type is set, check if all values conform with value_type.

Parameters
  • wells (lists of tuple) – List of well coordinates.

  • data_tag (str) – Data tag.

  • value_type (str) – The type of the return values.

Returns

(list of x), where x are of type value_type, if value_type is set.

get_wells(data_tag, condition)[source]

Get list of well coordinates for which the data tagged with data_tag conforms to condition.

Get list of well coordinates for which the data tagged with data_tag conforms to condition.

Parameters
  • data_tag (str) – Data tag.

  • condition (method) – The condition expressed as a method. E.g., condition=lambda x: x==True

Returns

(list of (int, int)).

write(format, path=None, tag=None, return_string=None, *args)[source]

Serialize and write PlateData instances.

Serialize PlateData instance using the stated format.

Parameters
  • format (str) – The output format: Currently only csv, pickle.

  • path (str) – Path to output file

Todo

Write checks for format and path.

hts.plate_data.plate_data_io module

synopsis

Input/output for plate data.

hts.plate_data.plate_data_io.read_csv(file, delimiter=', ', remove_empty_row=True)[source]

Read plate data file in csv format.

The arrangement in the .csv file corresponds exactly to the plate layout.

Parameters
  • file – Path to the .csv file.

  • delimiter – delimiter of the .csv file.

  • remove_empty_row – If True, ignore lines with no content.

Returns

Data retrieved from the excel file

Return type

data (dict of list of lists)

hts.plate_data.plate_data_io.read_excel(path, tags=None, **kwargs)[source]

Read plate data path in excel format.

Read plate data path in excel format. The plate values must be the only data in the excel sheets. That is, no check of the content of the sheet, nor of its size is currently performed.

Parameters
  • path (str) – Path to the path with data in the excel path format.

  • tag (list of str) – Names of all spreadsheets for which the data shall be returned.

Returns

Data retrieved from the excel file

Return type

data (dict of list of lists)

hts.plate_data.plate_layout module

synopsis

The PlateLayout Class.

class hts.plate_data.plate_layout.PlateLayout(layout, **kwargs)[source]

Bases: hts.plate_data.plate_data.PlateData

PlateLayout describes all information connected to the plate_data of a high throughput screen.

Vocabulary: neg_k: negative control k pos_k: positive control k s_k: sample k All other names may be used, but are not interpreted at current.

sample_replicate_count

(Explain!)

Type

str

layout_general_type

The plate layout

Type

list of lists

classmethod create_csv(path, name, tag=None, **kwargs)[source]
invert()[source]

Create an inverted PlateLayout instance.

Create an inverted PlateLayout instance. The misfortunate experimenter turned the plate by 180 degrees, such that the general plate layout needs to be adjusted.

hts.plate_data.readout module

synopsis

The Readout Class.

class hts.plate_data.readout.Readout(data, **kwargs)[source]

Bases: hts.plate_data.plate_data.PlateData

Readout describes one plate matrix

width

Width of the plate

Type

int

height

Height of the plate

Type

int

data

A matrix of plate values

Type

np.array of np.arrays

__str__()[source]

Create string for Readout instance.

create_envision_csv(name, tag=None, type=None, **kwargs)[source]
create_insulin_csv(name, tag=None, type=None, **kwargs)[source]

hts.plate_data.readout_io module

synopsis

Input/output for screen data.

hts.plate_data.readout_io.read_envision_csv(file, delimiter=', ')[source]

Read screen data file in [] format.

The envision .csv file structure is not described publicly. It may be read in as a .csv file.

The general file format is (luminescence example):

Plate information
Plate,Repeat,Barcode,Measured height,Chamber temperature at start,Chamber temperature at end,Humidity at start,Humidity at end,Ambient temperature at start,Ambient temperature at end,Formula,Measurement date,
1,1,,N/A,N/A,N/A,N/A,N/A,N/A,N/A,Calc 1: Crosstalk = Crosstalk correction where Label : US LUM 384 (cps)(1) channel 1,5/23/2015 16:41:02,

Background information
Plate,Label,Result,Signal,Flashes/Time,Meastime,MeasInfo,
1,US LUM 384 (cps),0,3896,0.1,00:00:00.000,De=USLum Ex=N/A Em=N/A Wdw=N/A,

27880,90040,6314480,6866120,7064360,7495280,7444560,7967720,7581640,8013480,8003800,8386840,8264000,8063960,7586280,7541760,8116560,8175520,8164640,7956520,7960440,7596680,168960,47000,
42200,143720,7661600,7987840,8128920,8284800,8602480,8513080,8606000,8800960,8388760,8792520,8588520,8438760,8174720,8362200,8271280,8561720,8322160,8375560,8243640,7986680,171840,58280,
49960,152920,8006520,8555840,8395680,8338240,8336760,8225720,8555840,8427720,8408880,8427800,8448560,8189920,8498800,8784560,8418480,8263760,8718480,8276200,8351440,8119240,174720,58800,
50320,146320,7972520,8241160,8394440,8389360,8547840,8589160,8484840,8760520,8407200,8600920,8354160,8469600,8831160,8599920,8459360,8572960,8633920,8246800,9091200,8087600,174360,61400,
50520,160760,8630160,8331000,8026720,8379800,8368800,8360920,8694200,8313320,8403720,8603720,8460840,8298080,8450040,8575720,9203200,9215560,8301600,8654520,8672280,8410840,174520,62360,
50920,148080,8033960,8308480,8274960,8243480,8375960,8576080,8197400,8392400,8731920,8643560,8568720,8308680,8236840,8265280,9154640,9374480,8498200,8415400,8756600,8353160,174160,60400,
52960,144080,7798040,8085440,8190400,7954800,8142320,7981600,8259640,8016800,8087040,8097640,8056320,7898400,7843760,8325080,8361280,8510960,7828040,8369680,8060600,7444600,161440,59800,
50120,145400,7783760,7533040,7389480,8032120,7825960,7477880,7264160,7182400,8141320,7842360,7610760,7041360,7355960,7328680,7687000,7232400,7529480,7211440,7091960,7065080,144560,55600,
49640,138480,7924440,7965320,8475000,8921800,8266640,8091680,8152880,8036600,7972800,8120280,8045120,7978760,7691840,8749720,8850000,8800720,8621680,8094320,7933200,8389240,175080,54520,
48680,145240,8024480,8331400,8225280,8334040,8393400,8306400,8225960,8000680,7967920,7903760,8433200,8161960,7901560,8523240,8925800,8372280,8529520,8882720,8551080,8390480,173120,53240,
51160,149200,8173320,8556000,8215000,8127600,8234800,8644080,8298800,8165760,7932640,7823760,8611000,8209520,8391360,8436080,8420160,8889120,8887560,8712840,8285040,8807680,179400,54040,
50760,158600,8063400,8324480,8088840,8183320,7860520,8184560,8097480,7907720,7821400,8065480,8257560,8282920,8477000,8203040,8796040,8617480,8515800,8527280,8756480,8323160,166280,55080,
50080,158600,8100640,8248480,8102800,8189200,8243920,8404040,8428960,8119400,8128080,8174360,8454080,9175480,8454920,8871360,8404120,8412720,8378200,8721800,8354640,8135040,163040,55600,
48320,144800,8100600,8127600,8225840,8602760,8275280,8765040,8485040,8425920,8016720,8561280,9294000,8747760,8609720,8663520,8497240,8517520,8713440,8572840,8423920,8697920,164040,58680,
45240,136360,7895040,7838120,7994680,8014320,8292720,8238080,8180600,7901440,8385880,8217400,8515040,8505480,9591720,9629720,8327040,8338560,8622040,8810000,8428240,8394080,168920,60040,
41280,138080,7523960,7681600,7770920,8126640,8142200,7769360,7562400,7553120,7810280,7687320,8150400,7966120,9034840,9346880,8305920,8614160,8505400,8409480,8383360,8055640,155120,53440,

Plate information
Plate,Repeat,Barcode,Measured height,Chamber temperature at start,Chamber temperature at end,Humidity at start,Humidity at end,Ambient temperature at start,Ambient temperature at end,Group,Label,ScanX,ScanY,Measinfo,Kinetics,Measurement date,
1,1,,14.76,26.18,26.11,30.5,30.7,24.19,24.12,1,US LUM 384 (cps)(1),0,0,De=USLum Ex=N/A Em=N/A Wdw=N/A,0,5/23/2015 16:41:02,

Background information
Plate,Label,Result,Signal,Flashes/Time,Meastime,MeasInfo,
1,US LUM 384 (cps),0,3896,0.1,00:00:00.000,De=USLum Ex=N/A Em=N/A Wdw=N/A,

27880,90040,6314480,6866120,7064360,7495280,7444560,7967720,7581640,8013480,8003800,8386840,8264000,8063960,7586280,7541760,8116560,8175520,8164640,7956520,7960440,7596680,168960,47000,
42200,143720,7661600,7987840,8128920,8284800,8602480,8513080,8606000,8800960,8388760,8792520,8588520,8438760,8174720,8362200,8271280,8561720,8322160,8375560,8243640,7986680,171840,58280,
49960,152920,8006520,8555840,8395680,8338240,8336760,8225720,8555840,8427720,8408880,8427800,8448560,8189920,8498800,8784560,8418480,8263760,8718480,8276200,8351440,8119240,174720,58800,
50320,146320,7972520,8241160,8394440,8389360,8547840,8589160,8484840,8760520,8407200,8600920,8354160,8469600,8831160,8599920,8459360,8572960,8633920,8246800,9091200,8087600,174360,61400,
50520,160760,8630160,8331000,8026720,8379800,8368800,8360920,8694200,8313320,8403720,8603720,8460840,8298080,8450040,8575720,9203200,9215560,8301600,8654520,8672280,8410840,174520,62360,
50920,148080,8033960,8308480,8274960,8243480,8375960,8576080,8197400,8392400,8731920,8643560,8568720,8308680,8236840,8265280,9154640,9374480,8498200,8415400,8756600,8353160,174160,60400,
52960,144080,7798040,8085440,8190400,7954800,8142320,7981600,8259640,8016800,8087040,8097640,8056320,7898400,7843760,8325080,8361280,8510960,7828040,8369680,8060600,7444600,161440,59800,
50120,145400,7783760,7533040,7389480,8032120,7825960,7477880,7264160,7182400,8141320,7842360,7610760,7041360,7355960,7328680,7687000,7232400,7529480,7211440,7091960,7065080,144560,55600,
49640,138480,7924440,7965320,8475000,8921800,8266640,8091680,8152880,8036600,7972800,8120280,8045120,7978760,7691840,8749720,8850000,8800720,8621680,8094320,7933200,8389240,175080,54520,
48680,145240,8024480,8331400,8225280,8334040,8393400,8306400,8225960,8000680,7967920,7903760,8433200,8161960,7901560,8523240,8925800,8372280,8529520,8882720,8551080,8390480,173120,53240,
51160,149200,8173320,8556000,8215000,8127600,8234800,8644080,8298800,8165760,7932640,7823760,8611000,8209520,8391360,8436080,8420160,8889120,8887560,8712840,8285040,8807680,179400,54040,
50760,158600,8063400,8324480,8088840,8183320,7860520,8184560,8097480,7907720,7821400,8065480,8257560,8282920,8477000,8203040,8796040,8617480,8515800,8527280,8756480,8323160,166280,55080,
50080,158600,8100640,8248480,8102800,8189200,8243920,8404040,8428960,8119400,8128080,8174360,8454080,9175480,8454920,8871360,8404120,8412720,8378200,8721800,8354640,8135040,163040,55600,
48320,144800,8100600,8127600,8225840,8602760,8275280,8765040,8485040,8425920,8016720,8561280,9294000,8747760,8609720,8663520,8497240,8517520,8713440,8572840,8423920,8697920,164040,58680,
45240,136360,7895040,7838120,7994680,8014320,8292720,8238080,8180600,7901440,8385880,8217400,8515040,8505480,9591720,9629720,8327040,8338560,8622040,8810000,8428240,8394080,168920,60040,
41280,138080,7523960,7681600,7770920,8126640,8142200,7769360,7562400,7553120,7810280,7687320,8150400,7966120,9034840,9346880,8305920,8614160,8505400,8409480,8383360,8055640,155120,53440,


Basic assay information
Assay ID: ,,,,13383
Assay Started: ,,,,5/23/2015 16:39:34
Assay Finished: ,,,,5/23/2015 16:41:04
Assay Exported: ,,,,5/23/2015 16:41:11
Protocol ID: ,,,,50035
Protocol Name: ,,,,US LUM 384
Serial#: ,,,,1040204



Protocol information
Protocol:
Protocol name,,,,US LUM 384
Number of assay repeats,,,,1
Start assay repeat each,,,,N/A
Number of plate repeats,,,,1
Start plate repeat each,,,,N/A
Is label meas. height used,,,,Yes
Height of measurement,,,,Defined in label
Is gripper height used,,,,No
Mode of measurement,,,,By Rows  bi-directional
Rotated plate,,,,No
Soft move,,,,No
Protocol notes,,,,

Plate type:
Name of the plate type,,,,384 General
Number of rows,,,,16
Number of columns,,,,24
Number of the wells in the plate,,,,384
Height of the plate,,,,14.35 mm

Coordinates of corners:
384 General
12.13 mm x------------------------------------------------------ x 115.63 mm
8.99 mm                                                            8.99 mm

12.13 mm x------------------------------------------------------ x 115.63 mm
76.49 mm                                                           76.49 mm

Platemap:
Plate,,,,1
Group,,,,1

,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
A,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
B,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
C,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
D,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
E,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
F,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
G,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
H,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
I,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
J,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
K,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
L,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
M,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
N,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
O,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
P,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-

 - - Undefined

Calculations:
Plate,,,,1
 Formula index,,,,Calc 1
 Formula name,,,,CrossTalk
 Formula,,,,Crosstalk where Label : US LUM 384 (cps)(1) channel 1

Auto export parameters:
Export format,,,,Plate
Include basic assay information,,,,Yes
Place assay information at,,,,End of file
Include basic plate information,,,,Yes
Place plate information at,,,,Beginning of plate
Include protocol information,,,,Yes
Protocol info level,,,,Large
Include error and warning information,,,,Yes
Include background information,,,,Yes
Add plate number to the file name,,,,Yes
Each plate to separate file,,,,No
Field separator to use,,,,System
File name format,,,,<DefaultDataFolder>\<Date>\<Time>_<AssayID>.csv

Operations:
Plate 1
  Group 1
    Measurement
      Label,,,,US LUM 384 (cps)(1)

Labels:
US LUM 384 (cps),,,,7500004
Measurement height,,,,0 mm
Measurement time,,,,0.1 s
CT,,,,0
Aperture,,,,384 Plate US Luminescence aperture
Last edited,,,,10/16/2008 14:06:15
Last edited by,,,,Installation
Factory preset,,,,Yes

Aperture:
384 Plate US Luminescence aperture,,,,9
Height,,,,4.2 mm
Diameter,,,,3.7 mm
Description,,,,Can also be used in 96 plate
Last edited,,,,10/16/2008 14:06:15
Last edited by,,,,Installation
Factory preset,,,,Yes

Instrument:
Serial number,,,,1040204
Nickname,,,,EnVision

Normalization:





Exported with EnVision Workstation version X.XX Build X

Todo

Extract all necessary information

Todo

Show correct output format

Parameters

filename (str) – Path to the file with data in the envision file format.

Returns

Information per plate channel_wise_reads (dict of list of lists): Read out tales channel_wise_info (dict of ?): Information per read out table

Return type

plate_info (dict of ?)

hts.plate_data.readout_io.read_insulin_csv(file)[source]

Read screen data file in [] format. Afterwards, map to plate layout.

The .csv file structure is not described publicly.

The general file format is (example read in as .csv):

['User: USER', 'Path: C:\Program Files (x86)\BMG\Omega\User\Data\', 'Test run no.: 33']
['Test name: M_InsulinAssay384', 'Date: 29.06.2015', 'Time: 18:40:06']
['Fluorescence (FI)']
['Well Row', '', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P']
['Well Col', '', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24']
['Content', 'Time', 'Sample X1', 'Sample X2', 'Sample X3', 'Sample X4', 'Sample X5', 'Sample X6', 'Sample X7', 'Sample X8', 'Sample X9', 'Sample X10', 'Sample X11', 'Sample X12', 'Sample X13', 'Sample X14', 'Sample X15', 'Sample X16', 'Sample X17', 'Sample X18', 'Sample X19', 'Sample X20', 'Sample X21', 'Sample X22', 'Sample X23', 'Sample X24', 'Sample X25', 'Sample X26', 'Sample X27', 'Sample X28', 'Sample X29', 'Sample X30', 'Sample X31', 'Sample X32', 'Sample X33', 'Sample X34', 'Sample X35', 'Sample X36', 'Sample X37', 'Sample X38', 'Sample X39', 'Sample X40', 'Sample X41', 'Sample X42', 'Sample X43', 'Sample X44', 'Sample X45', 'Sample X46', 'Sample X47', 'Sample X48', 'Sample X49', 'Sample X50', 'Sample X51', 'Sample X52', 'Sample X53', 'Sample X54', 'Sample X55', 'Sample X56', 'Sample X57', 'Sample X58', 'Sample X59', 'Sample X60', 'Sample X61', 'Sample X62', 'Sample X63', 'Sample X64', 'Sample X65', 'Sample X66', 'Sample X67', 'Sample X68', 'Sample X69', 'Sample X70', 'Sample X71', 'Sample X72', 'Sample X73', 'Sample X74', 'Sample X75', 'Sample X76', 'Sample X77', 'Sample X78', 'Sample X79', 'Sample X80', 'Sample X81', 'Sample X82', 'Sample X83', 'Sample X84', 'Sample X85', 'Sample X86', 'Sample X87', 'Sample X88', 'Sample X89', 'Sample X90', 'Sample X91', 'Sample X92', 'Sample X93', 'Sample X94', 'Sample X95', 'Sample X96', 'Sample X97', 'Sample X98', 'Sample X99', 'Sample X100', 'Sample X101', 'Sample X102', 'Sample X103', 'Sample X104', 'Sample X105', 'Sample X106', 'Sample X107', 'Sample X108', 'Sample X109', 'Sample X110', 'Sample X111', 'Sample X112', 'Sample X113', 'Sample X114', 'Sample X115', 'Sample X116', 'Sample X117', 'Sample X118', 'Sample X119', 'Sample X120', 'Sample X121', 'Sample X122', 'Sample X123', 'Sample X124', 'Sample X125', 'Sample X126', 'Sample X127', 'Sample X128', 'Sample X129', 'Sample X130', 'Sample X131', 'Sample X132', 'Sample X133', 'Sample X134', 'Sample X135', 'Sample X136', 'Sample X137', 'Sample X138', 'Sample X139', 'Sample X140', 'Sample X141', 'Sample X142', 'Sample X143', 'Sample X144', 'Sample X145', 'Sample X146', 'Sample X147', 'Sample X148', 'Sample X149', 'Sample X150', 'Sample X151', 'Sample X152', 'Sample X153', 'Sample X154', 'Sample X155', 'Sample X156', 'Sample X157', 'Sample X158', 'Sample X159', 'Sample X160', 'Sample X161', 'Sample X162', 'Sample X163', 'Sample X164', 'Sample X165', 'Sample X166', 'Sample X167', 'Sample X168', 'Sample X169', 'Sample X170', 'Sample X171', 'Sample X172', 'Sample X173', 'Sample X174', 'Sample X175', 'Sample X176', 'Sample X177', 'Sample X178', 'Sample X179', 'Sample X180', 'Sample X181', 'Sample X182', 'Sample X183', 'Sample X184', 'Sample X185', 'Sample X186', 'Sample X187', 'Sample X188', 'Sample X189', 'Sample X190', 'Sample X191', 'Sample X192', 'Sample X193', 'Sample X194', 'Sample X195', 'Sample X196', 'Sample X197', 'Sample X198', 'Sample X199', 'Sample X200', 'Sample X201', 'Sample X202', 'Sample X203', 'Sample X204', 'Sample X205', 'Sample X206', 'Sample X207', 'Sample X208', 'Sample X209', 'Sample X210', 'Sample X211', 'Sample X212', 'Sample X213', 'Sample X214', 'Sample X215', 'Sample X216', 'Sample X217', 'Sample X218', 'Sample X219', 'Sample X220', 'Sample X221', 'Sample X222', 'Sample X223', 'Sample X224', 'Sample X225', 'Sample X226', 'Sample X227', 'Sample X228', 'Sample X229', 'Sample X230', 'Sample X231', 'Sample X232', 'Sample X233', 'Sample X234', 'Sample X235', 'Sample X236', 'Sample X237', 'Sample X238', 'Sample X239', 'Sample X240', 'Sample X241', 'Sample X242', 'Sample X243', 'Sample X244', 'Sample X245', 'Sample X246', 'Sample X247', 'Sample X248', 'Sample X249', 'Sample X250', 'Sample X251', 'Sample X252', 'Sample X253', 'Sample X254', 'Sample X255', 'Sample X256', 'Sample X257', 'Sample X258', 'Sample X259', 'Sample X260', 'Sample X261', 'Sample X262', 'Sample X263', 'Sample X264', 'Sample X265', 'Sample X266', 'Sample X267', 'Sample X268', 'Sample X269', 'Sample X270', 'Sample X271', 'Sample X272', 'Sample X273', 'Sample X274', 'Sample X275', 'Sample X276', 'Sample X277', 'Sample X278', 'Sample X279', 'Sample X280', 'Sample X281', 'Sample X282', 'Sample X283', 'Sample X284', 'Sample X285', 'Sample X286', 'Sample X287', 'Sample X288', 'Sample X289', 'Sample X290', 'Sample X291', 'Sample X292', 'Sample X293', 'Sample X294', 'Sample X295', 'Sample X296', 'Sample X297', 'Sample X298', 'Sample X299', 'Sample X300', 'Sample X301', 'Sample X302', 'Sample X303', 'Sample X304', 'Sample X305', 'Sample X306', 'Sample X307', 'Sample X308', 'Sample X309', 'Sample X310', 'Sample X311', 'Sample X312', 'Sample X313', 'Sample X314', 'Sample X315', 'Sample X316', 'Sample X317', 'Sample X318', 'Sample X319', 'Sample X320', 'Sample X321', 'Sample X322', 'Sample X323', 'Sample X324', 'Sample X325', 'Sample X326', 'Sample X327', 'Sample X328', 'Sample X329', 'Sample X330', 'Sample X331', 'Sample X332', 'Sample X333', 'Sample X334', 'Sample X335', 'Sample X336', 'Sample X337', 'Sample X338', 'Sample X339', 'Sample X340', 'Sample X341', 'Sample X342', 'Sample X343', 'Sample X344', 'Sample X345', 'Sample X346', 'Sample X347', 'Sample X348', 'Sample X349', 'Sample X350', 'Sample X351', 'Sample X352', 'Sample X353', 'Sample X354', 'Sample X355', 'Sample X356', 'Sample X357', 'Sample X358', 'Sample X359', 'Sample X360', 'Sample X361', 'Sample X362', 'Sample X363', 'Sample X364', 'Sample X365', 'Sample X366', 'Sample X367', 'Sample X368', 'Sample X369', 'Sample X370', 'Sample X371', 'Sample X372', 'Sample X373', 'Sample X374', 'Sample X375', 'Sample X376', 'Sample X377', 'Sample X378', 'Sample X379', 'Sample X380', 'Sample X381', 'Sample X382', 'Sample X383', 'Sample X384']
['Raw Data (450-10/480-10)', '0 h ', '24664', '26204', '25600', '22000', '25216', '26956', '24712', '24936', '28308', '23584', '23492', '25924', '24448', '25652', '24036', '23808', '24608', '23504', '22668', '23636', '22932', '25364', '23236', '24112', '26036', '27116', '26260', '22664', '28128', '24744', '26984', '24936', '23944', '25088', '23912', '24628', '25248', '22848', '26112', '25232', '23148', '26368', '24432', '25216', '26240', '23324', '23148', '23188', '27052', '26568', '23756', '24416', '26272', '24184', '25700', '25284', '25316', '26240', '26192', '25704', '24544', '24344', '27612', '26576', '25708', '26480', '26200', '25412', '23160', '23220', '23760', '23908', '26152', '26232', '25704', '25992', '25372', '26748', '27260', '24840', '25028', '24520', '26028', '24176', '23432', '24908', '24536', '24360', '24756', '23428', '23904', '24880', '24896', '26400', '23664', '22064', '24304', '24584', '25424', '25904', '26936', '26112', '24172', '25216', '25072', '23880', '22912', '25136', '26024', '25088', '25240', '26552', '25852', '25192', '23852', '24672', '21952', '21984', '24960', '24328', '28376', '24260', '25580', '25820', '24660', '24456', '25520', '21500', '24136', '24864', '25136', '25080', '22552', '23828', '24000', '25216', '25096', '26736', '22688', '24040', '22600', '24148', '24376', '23024', '25036', '23652', '25544', '25076', '23624', '27280', '23956', '26012', '22144', '23448', '24944', '25256', '23932', '23488', '25376', '24472', '24708', '25668', '23132', '23696', '23948', '22852', '24892', '21984', '27148', '26524', '26144', '26292', '24888', '24640', '26288', '25808', '22728', '24080', '24856', '24064', '24868', '24320', '24772', '24836', '24756', '26272', '24676', '23104', '24152', '23672', '23396', '23392', '25692', '24440', '24216', '28380', '26932', '25108', '25608', '22764', '24280', '22984', '24628', '24064', '24256', '24336', '24864', '22000', '23040', '27440', '23856', '21824', '24688', '22212', '23436', '23204', '24936', '25564', '24940', '24112', '24288', '23188', '26460', '24836', '27152', '23068', '25964', '23040', '22748', '22996', '23096', '24428', '24576', '25044', '25104', '23688', '23060', '20772', '23372', '21736', '24848', '24728', '26372', '24900', '26136', '24624', '23248', '22524', '24820', '24464', '23828', '22596', '24972', '24192', '24836', '22800', '22172', '23944', '22976', '23480', '26152', '23840', '24324', '22760', '25052', '23052', '28176', '24852', '24712', '25732', '27340', '24328', '25788', '23372', '24220', '22508', '25928', '24620', '22792', '24696', '23984', '26320', '26552', '21400', '22612', '24072', '21388', '21564', '22552', '24384', '26144', '24280', '24492', '38476', '26216', '24056', '23528', '24868', '25120', '24792', '22040', '24680', '23864', '24068', '23772', '24256', '25552', '23236', '24140', '22024', '23072', '22668', '21492', '23784', '27376', '24800', '24564', '25072', '26924', '23820', '25144', '24748', '22516', '28028', '23892', '24740', '24736', '24924', '24196', '26800', '23168', '26708', '21900', '21188', '23112', '21480', '23632', '25720', '25040', '24384', '24452', '27960', '26572', '24056', '25968', '25536', '26556', '24284', '25564', '24204', '23992', '23652', '24296', '25936', '21800', '23420', '21668', '24288', '25000', '22624', '22764', '22572', '23128', '23484', '24524', '24068', '24544', '22712', '24648', '24104', '21560', '22672', '25492', '23184', '22424', '22656', '22668', '23624', '22588', '21108', '23216', '21220', '21996', '21896']
['Raw Data (450-10/480-10)', '0 h 3 min', '25696', '24352', '24620', '25292', '24300', '26548', '22892', '24816', '24640', '25760', '23832', '23868', '27720', '23432', '25772', '24668', '24920', '23992', '26156', '24112', '22200', '23444', '24380', '23208', '25624', '25768', '24452', '24300', '27756', '23868', '23964', '24392', '24248', '23896', '25220', '24236', '25324', '23992', '23312', '24728', '24228', '23840', '23672', '22596', '25780', '21592', '21328', '21244', '24432', '22880', '25248', '27220', '26196', '27212', '23944', '26924', '24676', '25660', '23352', '24260', '25392', '23552', '25464', '24976', '24320', '26264', '22680', '23052', '22808', '24388', '25180', '20268', '25712', '24800', '27172', '26000', '26244', '26832', '26292', '24612', '26268', '22888', '24696', '24732', '23732', '25000', '25256', '26060', '24924', '25736', '25344', '24480', '22868', '26500', '23136', '20588', '24372', '24556', '23568', '26328', '25196', '26908', '27876', '23764', '23460', '25388', '24600', '25864', '26116', '24288', '23852', '25420', '23912', '24052', '24676', '24968', '23416', '21476', '25636', '21840', '24912', '23640', '26560', '25464', '24040', '24224', '24000', '25932', '23636', '25784', '25084', '24588', '23056', '23912', '25756', '24320', '24060', '28296', '23208', '22656', '24032', '25636', '23292', '22320', '25520', '24528', '23556', '25740', '24792', '25016', '24928', '22620', '23968', '23076', '25716', '25184', '23344', '22040', '23624', '24060', '25816', '25876', '22376', '22216', '23820', '24316', '24800', '22352', '23948', '23368', '24464', '25776', '24728', '24308', '25400', '23224', '25332', '23320', '23000', '23164', '24028', '23336', '23904', '23696', '23196', '23732', '23036', '23008', '24024', '22240', '22788', '21600', '24436', '25384', '24068', '24656', '26016', '24544', '23532', '24420', '25204', '23324', '25284', '22832', '23184', '24944', '23336', '25232', '23636', '23508', '23136', '20892', '22312', '22744', '23480', '22408', '27036', '25348', '25460', '23232', '23924', '24708', '25644', '22904', '25584', '22432', '22636', '25992', '23028', '23816', '23632', '24660', '22956', '21236', '24240', '21864', '21856', '22760', '23136', '21920', '24528', '25728', '26588', '25448', '24864', '25452', '24756', '25296', '23440', '26260', '27472', '24596', '22388', '25208', '24532', '22624', '24212', '23256', '24292', '24160', '24536', '22416', '22592', '24456', '25408', '24412', '24584', '25980', '25216', '25756', '25888', '25944', '24440', '24300', '23780', '22296', '24728', '26660', '25616', '25092', '25772', '24940', '22924', '24404', '22180', '25568', '25200', '22912', '25208', '26044', '25308', '23572', '24264', '39864', '25576', '25472', '23176', '25956', '25268', '25348', '25884', '22912', '23936', '25780', '23076', '25296', '24560', '23080', '23844', '22452', '22648', '22272', '27764', '25392', '25028', '24272', '27128', '26740', '25788', '23456', '23900', '24552', '23920', '27732', '23060', '23752', '25620', '27300', '24792', '25096', '24348', '23632', '24596', '24068', '24636', '22480', '21088', '24284', '25540', '23892', '25524', '25304', '28320', '22956', '25288', '22792', '25644', '25832', '25872', '23400', '22596', '24732', '24776', '25448', '21268', '23628', '24536', '21864', '24868', '22596', '23636', '25304', '24580', '23940', '23668', '22980', '22664', '20792', '25876', '23724', '24444', '22676', '23704', '23100', '22952', '24080', '22988', '22524', '24136', '22804', '23448', '23272', '22216', '21596']

… [‘Raw Data (450-10/480-10)’, ‘24 h ‘, ‘92800’, ‘82816’, ‘78852’, ‘24468’, ‘25900’, ‘22324’, ‘20384’, ‘66892’, ‘101476’, ‘85164’, ‘22176’, ‘174492’, ‘39984’, ‘73952’, ‘143660’, ‘70868’, ‘72600’, ‘21304’, ‘24376’, ‘22420’, ‘23348’, ‘22312’, ‘23616’, ‘20420’, ‘85200’, ‘70952’, ‘73548’, ‘69348’, ‘24384’, ‘25488’, ‘24700’, ‘24380’, ‘96772’, ‘50552’, ‘24136’, ‘260000’, ‘23528’, ‘128728’, ‘79116’, ‘73652’, ‘22992’, ‘22748’, ‘24100’, ‘24884’, ‘24032’, ‘21552’, ‘25680’, ‘22408’, ‘73524’, ‘74556’, ‘72456’, ‘93120’, ‘24452’, ‘22868’, ‘21500’, ‘23360’, ‘102440’, ‘85836’, ‘92504’, ‘260000’, ‘81764’, ‘21776’, ‘100372’, ‘78460’, ‘22164’, ‘25028’, ‘23384’, ‘23144’, ‘24036’, ‘23016’, ‘23140’, ‘22312’, ‘74172’, ‘76156’, ‘54784’, ‘48004’, ‘22324’, ‘27640’, ‘23160’, ‘156636’, ‘106144’, ‘88764’, ‘73328’, ‘70260’, ‘23296’, ‘97192’, ‘162224’, ‘91048’, ‘23440’, ‘23356’, ‘22264’, ‘24996’, ‘23776’, ‘23036’, ‘21812’, ‘21800’, ‘90348’, ‘84308’, ‘23584’, ‘63112’, ‘22240’, ‘22876’, ‘22880’, ‘23112’, ‘103736’, ‘89732’, ‘63072’, ‘22548’, ‘82852’, ‘73176’, ‘35872’, ‘76016’, ‘24880’, ‘24264’, ‘22696’, ‘23320’, ‘23920’, ‘22584’, ‘22168’, ‘21840’, ‘74412’, ‘75252’, ‘37532’, ‘71384’, ‘23980’, ‘22852’, ‘23152’, ‘22656’, ‘105296’, ‘92144’, ‘20632’, ‘29200’, ‘23780’, ‘24208’, ‘120060’, ‘79868’, ‘21412’, ‘22828’, ‘22312’, ‘24512’, ‘21984’, ‘21824’, ‘21460’, ‘21696’, ‘95996’, ‘77544’, ‘79152’, ‘24700’, ‘22440’, ‘22000’, ‘22428’, ‘22264’, ‘104392’, ‘154872’, ‘22544’, ‘232136’, ‘21544’, ‘90364’, ‘68496’, ‘73432’, ‘22336’, ‘22000’, ‘22216’, ‘24752’, ‘21292’, ‘23448’, ‘22056’, ‘21480’, ‘103124’, ‘86196’, ‘107096’, ‘95484’, ‘23784’, ‘23884’, ‘22992’, ‘19860’, ‘99912’, ‘90396’, ‘46256’, ‘69084’, ‘24268’, ‘185948’, ‘260000’, ‘72548’, ‘24996’, ‘23960’, ‘24620’, ‘23472’, ‘23204’, ‘23956’, ‘23532’, ‘23268’, ‘110844’, ‘86672’, ‘21496’, ‘61340’, ‘23936’, ‘22656’, ‘22844’, ‘22512’, ‘100960’, ‘101568’, ‘22952’, ‘260000’, ‘23348’, ‘72924’, ‘29148’, ‘78608’, ‘22168’, ‘20440’, ‘23472’, ‘24088’, ‘23968’, ‘21088’, ‘21792’, ‘21124’, ‘106716’, ‘103196’, ‘85308’, ‘21208’, ‘21468’, ‘21860’, ‘22968’, ‘23076’, ‘108668’, ‘107004’, ‘23496’, ‘25536’, ‘20936’, ‘72692’, ‘119792’, ‘80572’, ‘22636’, ‘24564’, ‘23060’, ‘22456’, ‘23328’, ‘22512’, ‘22072’, ‘23936’, ‘95544’, ‘88600’, ‘35492’, ‘94352’, ‘23652’, ‘24104’, ‘24696’, ‘22556’, ‘110020’, ‘75004’, ‘81776’, ‘260000’, ‘22236’, ‘79736’, ‘126644’, ‘82300’, ‘21760’, ‘22452’, ‘21332’, ‘22652’, ‘22180’, ‘22880’, ‘23848’, ‘22664’, ‘139048’, ‘110560’, ‘121972’, ‘86100’, ‘23504’, ‘23412’, ‘24436’, ‘22116’, ‘99472’, ‘98072’, ‘20612’, ‘75236’, ‘92184’, ‘36724’, ‘52132’, ‘77144’, ‘20228’, ‘22136’, ‘22004’, ‘22268’, ‘23948’, ‘22392’, ‘22816’, ‘20148’, ‘68720’, ‘87972’, ‘74404’, ‘23064’, ‘22936’, ‘32204’, ‘23896’, ‘22348’, ‘111532’, ‘108596’, ‘23384’, ‘77400’, ‘22676’, ‘156324’, ‘107708’, ‘76944’, ‘22200’, ‘22560’, ‘23808’, ‘23364’, ‘22672’, ‘20848’, ‘23488’, ‘20760’, ‘151656’, ‘96264’, ‘50708’, ‘89168’, ‘24312’, ‘21336’, ‘21792’, ‘24292’, ‘114804’, ‘82816’, ‘78708’, ‘260000’, ‘23416’, ‘22292’, ‘22464’, ‘76528’, ‘22944’, ‘22496’, ‘23256’, ‘23560’, ‘21752’, ‘21164’, ‘22680’, ‘22224’, ‘71908’, ‘84052’, ‘90484’, ‘21520’, ‘24096’, ‘22804’, ‘25404’, ‘21080’, ‘111256’, ‘113704’, ‘44036’, ‘260000’, ‘23592’, ‘22244’, ‘197724’, ‘80332’, ‘23544’, ‘22212’, ‘23016’, ‘26352’, ‘22480’, ‘21744’, ‘23184’, ‘22024’, ‘74344’, ‘91832’, ‘42572’, ‘80732’, ‘22032’, ‘24688’, ‘21960’, ‘69204’, ‘122800’, ‘82632’, ‘78348’, ‘197916’, ‘44216’, ‘74516’, ‘134416’, ‘76968’, ‘131412’, ‘18012’, ‘22432’, ‘20456’, ‘20400’, ‘22580’, ‘22384’, ‘18788’] [‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’]

Todo

Extract all necessary information

Todo

Show correct output format

Parameters

filename (str) – Path to the file with data in the envision file format.

Returns

Information per plate channel_wise_reads (dict of list of lists): Read out tales channel_wise_info (dict of ?): Information per read out table

Return type

plate_info (dict of ?)

Module contents