hts.plate package¶
Submodules¶
hts.plate.plate module¶
- synopsis
- The Plate Class. 
- 
class hts.plate.plate.Plate(data, name, **kwargs)[source]¶
- Bases: - object- Platedescribes all information connected to the readout_dict of a high throughput screen. This could be either several readouts of a plate, or the same plate across several plates.- 
name¶
- Name of the plate - Type
- str 
 
 - 
width¶
- Width of the plate - Type
- int 
 
 - 
height¶
- Height of the plate - Type
- int 
 
 - 
KNOWN_DATA_TYPES[i]
- The data associated to this Plate, e.g. a plate layout, or readouts. - Type
- subclass of plate_data.PlateData 
 
 - 
add_data(data_type, data, force=False, tag=None)[source]¶
- Add data of data_type to self.config_data - Add data of data_type to self.config_data 
 - 
calculate_control_normalized_signal(data_tag_readout, negative_control_key, positive_control_key, data_tag_normalized_readout=None, local=True, **kwargs)[source]¶
- Normalize the signal in data_tag_readout, normalized by negative_control_key and positive_control_key. - Normalize the signal in data_tag_readout, normalized by negative_control_key and positive_control_key. - The normalization is calculated as: .. math: - y’ = - rac{y - mu_{nc}}{| mu_{nc} - mu_{pc}| } - For local==True, $mu_{nc}$ and $mu_{pc}$ are predicted locally to the well (using Gaussian processes). For local==False, $mu_{nc}$ and $mu_{pc}$ are estimated by the average control values across the plate. - Args:
- data_tag_readout (str): The key for self.readout.data where the readouts are stored. negative_control_key (str): The name of the negative control in the plate layout. positive_control_key (str): The name of the positive control in the plate layout. data_tag_normalized_readout (str): The key for self.readout.data where the normalized readouts will be stored. local (Bool): If True, use Gaussian processes to locally predict the control distributions. Else, use - plate-wise control distributions. 
 
 - 
calculate_linearly_normalized_signal(unnormalized_key, normalized_0, normalized_1, normalized_key)[source]¶
- Linearly normalize the data \[\]- normalized__i = - rac{ x_{unnormalized_i} - hat{x_{low}} } { hat{x_{high}} - hat{x_{low}} } - normalized_0 are all wells (according to the plate layout) with mean(wells)==0 after normalization. normalized_1 are all wells (according to the plate layout) with mean(wells)==1 for normalization. - Args:
- unnormalized_key (str): The key for self.readout.data where the unnormalized - Readoutinstance is stored. normalized_key (str): The key for self.readout.data where the resulting normalized- Readoutinstance will be stored. x_low (list of str): The list of names of all low fixtures in the plate layout (self.plate_data). x_high (list of str): The list of names of the high fixture in the plate layout (self.plate_data).
 
 - 
calculate_local_ssmd(data_tag_mean_pos, data_tag_mean_neg, data_tag_std_pos, data_tag_std_neg, data_tag_ssmd, **kwargs)[source]¶
- Calculate local SSMD values. - Parameters
- data_tag_mean_pos – 
- data_tag_mean_neg – 
- data_tag_std_pos – 
- data_tag_std_neg – 
- data_tag_ssmd – 
 
 - Returns: 
 - 
calculate_net_fret(donor_channel, acceptor_channel, fluorophore_donor='fluorophore_donor', fluorophore_acceptor='fluorophore_acceptor', buffer='buffer', net_fret_key='net_fret')[source]¶
- Calculate the net FRET signal for a donor acceptor FRET setup. - Calculate the net FRET signal for a donor acceptor FRET setup. Typical donor -> aceptor pairs include - 414nm CFP -> 475nm -> YFP 525nm 
- EU -> 615nm -> APC 665nm 
 - The following wells are needed, for both channels - donor Donor_fluorophor blank 
- acceptor Acceptor_fluorophor blank 
- buffer Buffer blank 
 - The proportionality factor for donor compensation is then calculation as .. math: - p = - rac{hat{donor_{acceptor_channel}} - hat{buffer_{acceptor_channel}}}{hat{donor_{donor_channel}} - hat{buffer_{donor_channel}}} - Further, the net FRET signal f for all wells x may be calculated as: .. math: - netfret = x_{acceptor_channel} - hat{acceptor_{acceptor_channel}} - p cdot (x_{donor_channel} - hat{buffer_{donor_channel}}) - Args:
- donor_channel (str): The key for self.readout.data where the donor_channel - Readoutinstance is stored. acceptor_channel (str): The key for self.readout.data where the acceptor_channel- Readoutinstance is stored. fluorophore_donor (str): The name of the donor fluorophore in self.plate_data. fluorophore_acceptor (str): The name of the acceptor fluorophore in self.plate_data. buffer (str): The name of the buffer in self.plate_data. net_fret_key (str): The key for self.readout.data where the resulting net fret- Readoutinstance will be stored.
 
 - 
calculate_normalization_by_division(unnormalized_key, normalizer_key, normalized_key)[source]¶
- The normalize data set is equal to a division of all data by the mean of a subset of the data. :param unnormalized_key: The key for self.readout.data where the unnormalized - Readoutinstance is stored. :type unnormalized_key: str :param normalized_key: The key for self.readout.data where the resulting normalized- Readoutinstance will be stored. :type normalized_key: str
 - 
calculate_significance_compared_to_null_distribution(data_tag_readout, sample_tag_null_distribution, data_tag_standard_score, data_tag_p_value, is_higher_value_better, **kwargs)[source]¶
- Calculate the standard score and p-value for all data (in data_tag_readout) compared to the null distribution defined by all data of sample_tag_null_distribution in data_tag_readout. Save as readouts with tags data_tag_standard_score and data_tag_p_value. - Assume that the samples in sample_tag_null_distribution follows a Gaussian distribution. - WARNING! For pvalue calculation, we assume that the control, which has lower mean values, is also supposed to show lower mean values. [Otherwise, we would have to introduce a boolean “pos_control_lower_than_neg_control.”] - Parameters
- data_tag_readout (str) – The key for self.readout.data where the readouts are stored. 
- sample_tag_null_distribution (str) – The sample key (defined in plate layout) defining what sample will make up the null distribution that we compare all other samples to. 
- data_tag_standard_score (str) – The key for self.readout.data where the standard scores will be stored. 
- data_tag_p_value (str) – The key for self.readout.data where the p-values will be stored. 
- **kwargs – 
 
 - Returns: 
 - 
classify_by_cutoff(data_tag_readout, data_tag_classified_readout, threshold, is_higher_value_better=True, is_twosided=False, **kwargs)[source]¶
- Map a dataset of float values to either binary (is_twosided==False) or [-1,0,1] (is_twosided==True), depending on whether values fall below threshold - Parameters
- data_tag_readout – The key for self.readout.data where the readouts are stored. 
- data_tag_classified_readout – The key for self.readout.data where the True/False classification values will be stored. 
- threshold – 
 
 - Returns: 
 - 
create(name=None, **kwargs)[source]¶
- Create - Plateinstance.- Create - Plateinstance.- Parameters
- path (str) – Path to input file or directory 
- format (str) – Format of the input file, at current not specified 
 
 
 - 
cross_validate_predictions(data_tag_readout, sample_tag, method_name, **kwargs)[source]¶
- Cross validate sample value predictions for sample type sample_tag and readout data_tag_readout, using prediction method method_name. - Parameters
- data_tag_readout (str) – The key for self.readout.data where the - Readoutinstance is stored.
- sample_tag (str) – The sample for which the gaussian process will be modeled according to the position in self.plate_layout.data. E.g. for positive controls “pos” 
- method_name (str) – The prediction method. E.g. gp for Gaussian processes. 
 
 
 - 
evaluate_well_value_prediction(data_predictions, data_tag_readout, sample_key=None)[source]¶
- Calculate mean squared prediction error. - ToDo: Debug. Better: REWRITE! 
 - 
filter(value_data_type, value_data_tag, value_type=None, condition_data_type=None, condition_data_tag=None, condition=None, return_list=True)[source]¶
- Get list of values for defined wells of the data tagged with data_tag. If value_type is set, check if all values conform with value_type. - Parameters
- condition_data_type (str) – Reference to PlateData instance on which wells are filtered for the condition. 
- condition_data_tag (str) – Data tag for condition_data_type 
- condition (method) – The condition expressed as a method. 
- value_data_type (str) – Reference to PlateData instance from which (for filtered wells) the values are retrieved. 
- value_data_tag (str) – Data tag for value_data_type. 
- value_type (str) – The type of the return values. 
- return_list (bool) – Returns a flattened list of all values 
 
- Returns
- (list of x), where x are of type value_type, if value_type is set. 
 - ..todo: rename method from filter to get_data 
 - 
randomize_values(data_tag_readout, data_tag_randomized_readout, randomized_samples='s', **kwargs)[source]¶
- Randomize the signal in a readout per plate and for a specific sample. The result of this method has only visualization purposes. - Parameters
- data_tag_readout (str) – The key for self.readout.data where the readouts are stored. 
- data_tag_randomized_readout (str) – The key for self.readout.data where the randomized data will be stored. 
- **kwargs – 
 
 
 
-